Dr Pedro R. Cutillas

BSc, PhD
Reader in Cell Signalling and Proteomics
Group Leader
Research Focus

My research group uses unique proteomics and computational approaches to understand how cell signalling pathways driven by the activity of protein kinases contribute to the development of cancer. Increasing this knowledge will be invaluable in advancing personalised cancer therapies.

Key Publications

Proteomic and genomic integration identifies kinase and differentiation determinants of kinase inhibitor sensitivity in leukemia cells. Leukemia (2018) 32(8):1818-22. PMID: 29626197

Empirical inference of circuitry and plasticity in a kinase signaling network. PNAS(2015) 112(25):7719-24. PMID: 26060313

Kinase-Substrate Enrichment Analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Science Signaling (2013) 3: rs6 PMID: 23532336

Phosphoproteomic analysis of leukemia cells under basal and drug-treated conditions identifies markers of kinase pathway activation and mechanisms of resistance. Mol Cell Proteomics (2012) 11(8):453-66. PMCID: PMC3412974.

Major Funding
  • 2018-2022- MRC Medical Research Council, Translational Biology iCASE Programme - Grant, £202,131.99
  • 2017-2021- CRUK, £350,000
  • 2017-2019- Barts Charity, Proteomics mass spectrometry for the Barts Post-Genomic Phenotype Unit, £371,000
Other Activities
Research

I am interested in understanding how cell signalling pathways driven by the activity of protein kinases contribute to the development of cancer. Signalling pathways do not work in isolation but form a complex network of biochemical reactions that integrate extracellular signals into a coordinated cell biological response.

Essentially all cancers deregulate one or several components of this biochemical network, but unfortunately, cancers are heterogeneous in the way signalling is perturbed. In practice, this means that novel targeted therapies against signalling nodes do not work equally well in all patients. Even those patients that initially respond eventually develop resistance.

To understand the mechanisms underlying this heterogeneity, I developed methodology based on a technique named mass spectrometry and on computational science. These techniques can be used to measure how the signalling network is wired in individual cancer populations in a comprehensive and unbiased manner.

My group is now using these unique resources to investigate the fundamental properties of signalling networks and to understand how signalling heterogeneity in cancer (with particular focus on haematological malignancies) contribute to intrinsic and acquired resistance to compounds that target signalling enzymes.

Other Activities
Major Funding
  • 2018-2022- MRC Medical Research Council, Translational Biology iCASE Programme - Grant, £202,131.99
  • 2017-2021- CRUK, £350,000
  • 2017-2019- Barts Charity, Proteomics mass spectrometry for the Barts Post-Genomic Phenotype Unit, £371,000
  • 2015-2018- B.B.S.R.C., Systematic classificiation of phosphorylation sites for an integrative analysis of kinase signalling, £374,677
  • 2015-2017- Barts Charity, Personalizing cancer treatments, £475,828

Recent Publications

Cancer Burden Is Controlled by Mural Cell-β3-Integrin Regulated Crosstalk with Tumor Cells Wong PP, Muñoz-Félix JM, Hijazi M et al. Cell (2020) 181(7) 1346-1363.e21

Prediction of Signed Protein Kinase Regulatory Circuits Invergo BM, Petursson B, Akhtar N et al. Cell Systems (2020) 10(13) 384-396.e9

Cancer associated fibroblast FAK regulates malignant cell metabolism. Demircioglu F, Wang J, Candido J et al. Nature Communications (2020) 11(1) 1290-1290
https://www.ncbi.nlm.nih.gov/pubmed/32157087

Liver Activation of Hepatocellular Nuclear Factor-4α by Small Activating RNA Rescues Dyslipidemia and Improves Metabolic Profile Huang KW, Reebye V, Czysz K et al. Molecular Therapy - Nucleic Acids (2020) 19(7) 361-370

Reconstructing kinase network topologies from phosphoproteomics data reveals cancer-associated rewiring Hijazi M, Smith R, Rajeeve V et al. Nature Biotechnology (2020) (1)

A systematic molecular and pharmacologic evaluation of AKT inhibitors reveals new insight into their biological activity Kostaras E, Kaserer T, Lazaro G et al. British Journal of Cancer (2020) (7)

Chemical phosphoproteomics systematically identifies circuitries of kinase networks in cancer cells and predicts their response to kinase inhibitors Cutillas PR, Hijazi M, Smith R et al. MOLECULAR CANCER THERAPEUTICS (2019) 18(11)
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000510047200329&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=612ae0d773dcbdba3046f6df545e9f6a

Poly(ADP-Ribose) Polymerase-1 inhibition potentiates cell death and phosphorylation of DNA damage response proteins in oxidative stressed retinal cells. Martín-Guerrero SM, Casado P, Muñoz-Gámez JA et al. Exp Eye Res (2019) 188(2) 107790
https://www.ncbi.nlm.nih.gov/pubmed/31494107

Integrin alpha V beta 6-EGFR crosstalk regulates bidirectional force transmission and controls breast cancer invasion Thomas JR, Moore KM, Sproat C et al. INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY (2019) 100(11) A39-A39
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000498417900076&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=612ae0d773dcbdba3046f6df545e9f6a

Perineural invasion in pancreatic cancer: proteomic analysis and in vitro modelling. Alrawashdeh W, Jones R, Dumartin L et al. Mol Oncol (2019) 13(2) 1075-1091
https://www.ncbi.nlm.nih.gov/pubmed/30690892

For additional publications, please click here
Team

Postdoctoral Researchers

Dr David BrittonDr Pedro Casado-Izquierdo , Dr Maruan Hijazi-Vega, Dr Arran Dokal, Dr Ryan Smith

PhD Students
Mr Federico Pedicona, Mr Henry Gerdes

Mass Spectrometrist in this group
Dr Vinothini Rajeeve, Ruth Otunsola

Biography

I graduated with a PhD in 2004 from UCL. My studies (completed in the laboratories of Prof Mike Waterfield, Prof Rainer Cramer and Prof Al Burlingame) were on a project that investigated kidney physiology and were supervised by Prof Robert Unwin. I then completed postdoctoral training at the Ludwig Institute for Cancer Research (UCL branch).

In 2007, I became lecturer at the Centre for Cell Signalling and in 2010 I was promoted to Senior Lecturer. After a period in the MRC Clinical Sciences Centre (2012-2013), where I was Head of the Mass Spectrometry and Proteomics, I joined the Centre for Haemoto-Oncology in 2013 where I now lead the Integrative Cell Signalling and Proteomics Group.

Upcoming Events
  1. MSc Cancer Programmes Live Q&A Event

    July 27 @ 1:00 pm - 4:30 pm
  2. The London Pancreas Workshop 2020

    September 11 @ 9:30 am - 4:30 pm
© 2013 ~ 2020 Cancer Research UK Barts Centre