Professor Kairbaan Hodivala-Dilke

BSc, PhD, FMedSci
Deputy Institute Director,
Professor of the Tumour Microenvironment
Centre Lead, Group Leader, Research Theme Lead
Research Focus

Our research aims to examine the molecular mechanisms underlying tumour stromal contributions to tumour growth and therapy efficacy. In particular we are interested in angiogenesis, the formation of new blood vessels and the cancer associated fibroblasts roles, using a combination of cell type-specific knockout and knockin systems in mouse models of cancer and analysis of the cellular and molecular mechanisms behind these observations.

Key Publications

Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread. Cancer Cell (2015) 27(1):123-37. PMID: 25584895

Endothelial-FAK is required for the maintenance of chemoresistance. Nature (2014) 2(12): 516–528. PMID: 21154724

Tumour angiogenesis is reduced in the Tc1 mouse model of Down’s syndrome. Nature (2010) 465(7299):813-817. PMID: 20535211

Stimulation of tumor growth and angiogenesis by low concentrations of integrin inhibitors in therapy-resistant tumors. Nature Medicine (2009) 15(4):392-400. PMID: 19305413

Major Funding
  • 2020-2023- Pancreatic Cancer Research Fund, Project Grant 'Reducing pancreatic cancer metastasis by targeting the endothelial cell niche,' £200,000
  • 2016-2019- Worldwide Cancer Research, Dual action combination therapy targeting both tumour stromal and malignant cell compartments for improved pancreatic ductal adenocarcinoma treatment,’ £249,000
  • 2015-2020- Cancer Research UK Programme Grant, Targeting tumour blood vessels to alter angiocrine factors and enhance chemosensitisation, £2,100,000
Other Activities
  • MRC Clinician Fellowships Board (2020-)
  • CRUK RadNet Exec Board (2019-)
  • WeAreTheCity – Rising women stars awards, women in India (2018)
  • CRUK Science Committee (2017-)
Research

Our research aims to examine the molecular mechanisms underlying tumour stromal contributions to tumour growth and therapy efficacy.  In particular we are interested in angiogenesis, the formation of new blood vessels and the cancer associated fibroblasts roles, using a combination of cell type-specific knockout and knockin systems in mouse modelsof cancer and analysis of the cellular and molecular mechanisms behind these observations.

Our research has historically focused on the role of adhesion related molecules including various integrins and downstream signalling molecules in angiogenic processes. Our seminal finding that αvβ3-integrin, rather than promoting neovascularisation, actually acts as a negative regulator of pathological angiogenesis was a major conceptual advance.

These studies also guided us to a better understanding of how low doses of αvβ3 inhibitors can upregulate angiogenesis. Additionally, we have exploited a mouse model of Down’s syndrome to identify that 3 copies of certain chromosome 21 genes can specifically inhibit tumour angiogenesis providing us with a new system to discover novel modulators of neovascularisation.

We have also established the role of stromal focal adhesion kinase (FAK) not only in tumour growth and progression but also in chemoresistance.

Lastly we have pioneered a novel concept in vascular promotion using low doses of RGD mimetics in enhancing the efficacy of cancer therapy.

Our overall goal is to discover novel therapeutic vascular targets to modulate stromal control in the control of cancer.

Other Activities
  • Reviewer for several Journal and grant funding bodies

Committees:

  • MRC Clinician Fellowships Board (2020-)
  • CRUK RadNet Exec Board (2019-)
  • WeAreTheCity – Rising women stars awards, women in India (2018)
  • CRUK Science Committee (2017-)
  • Worldwide Cancer Research Board of Trustees (2017-)
  • CRUK CITA steering committee (2017-)
  • CRICK CRF CRICK Accelerator award steering committee (2016-)
  • EMBO fellowship evaluator (2016-)
  • Academy Medical Sciences Springboard fund Champion (2016-)
  • Journal Cell Science Editorial Team (2015-)
Major Funding
  • 2020-2023- Pancreatic Cancer Research Fund, Project Grant 'Reducing pancreatic cancer metastasis by targeting the endothelial cell niche,' £200,000
  • 2016-2019- Worldwide Cancer Research, Dual action combination therapy targeting both tumour stromal and malignant cell compartments for improved pancreatic ductal adenocarcinoma treatment,’ £249,000
  • 2015-2020- Cancer Research UK Programme Grant, Targeting tumour blood vessels to alter angiocrine factors and enhance Chemosensitisation, £2,100,000
  • 2015-2018- Barts Charity, £229,000
  • 2012-2015- Association of International Cancer Research, Development of a novel pre-angiogenic approach for cancer therapy, £260,803
  • 2011- Cancer Research UK Large Equipment, £200,000
  • 2010-2015- Cancer Research UK Programme grant, Modelling the stromal regulation of tumour angiogenesis, £2,800,000
Recent Publications

Improved immunotherapy efficacy by vascular modulation Newport EL, Pedrosa AR, Njegic A et al. Cancers (2021) 13(7)

Correction to: Phosphorylation of pericyte FAK‑Y861 affects tumour cell apoptosis and tumour blood vessel regression (Angiogenesis, (2021), 24, 3, (471-482), 10.1007/s10456-021-09776-8) Lees DM, Reynolds LE, Pedrosa AR et al. Angiogenesis (2021) 24(7) 483-487

Phosphorylation of pericyte FAK-Y861 affects tumour cell apoptosis and tumour blood vessel regression Lees DM, Reynolds LE, Pedrosa AR et al. Angiogenesis (2021) 24(7) 471-482

Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth Lechertier T, Reynolds LE, Kim H et al. Nature Communications (2020) 11(7)

Regulation of tumour progression and metastasis by Endothelial-FAK upon chemotherapy treatment Roy-Luzarraga M, Reynolds L, Hodivala-Dilke K Pancreatology (2020) 20(10) e9

Association of Low Tumor Endothelial Cell pY397-Focal Adhesion Kinase Expression With Survival in Patients With Neoadjuvant-Treated Locally Advanced Breast Cancer Roy-Luzarraga M, Abdel-Fatah T, Reynolds LE et al. JAMA network open (2020) 3(7) e2019304

Cancer Burden Is Controlled by Mural Cell-β3-Integrin Regulated Crosstalk with Tumor Cells Wong PP, Muñoz-Félix JM, Hijazi M et al. Cell (2020) 181(7) 1346-1363.e21

Abstract A31: Tumor stroma in the development of acquired cancer therapy resistance Gomez-Escudero J, Maniati E, Whiting F et al. (2020) (10) a31-a31

Tumor cell–derived angiopoietin-2 promotes metastasis in Melanoma Pari AAA, Singhal M, Hubers C et al. Cancer Research (2020) 80(7) 2586-2598

Cancer associated fibroblast FAK regulates malignant cell metabolism. Demircioglu F, Wang J, Candido J et al. Nature Communications (2020) 11(1) 1290-1290
https://www.ncbi.nlm.nih.gov/pubmed/32157087

For additional publications, please click here
Team

Postdoctoral Researchers in this group
Dr Rita PedrosaDr Louise Reynolds, Dr Alexandra Njegic, Ms Emma Newport

PhD Students
Mr Matthew Dukinfield

Biography

I started my scientific career as a technical assistant, first at The Jodrell Laboratories, Kew Gardens, and then in the Wellcome Trust funded Malaria Research team at Imperial College, London. These short tastes of a scientist’s life fuelled my enthusiasm to embark on a career in research.

Following my undergraduate studies at the University of Southampton (1994) I gained a PhD after studying epithelial cell biology with Professor Fiona Watt at The Imperial Cancer Research Fund. I undertook postdoctoral work with Professor Richard Hynes at The Massachusetts Institute of Technology, USA, where my experience in using genetically modified mice began.

I then returned to the UK and was an Imperial Cancer Research Fund tenure-track fellow with Professor Ian Hart, first at St. Thomas’ Hospital and later here at Barts Cancer Institute, Barts and The London School of Medicine and Dentistry. I was awarded tenure in 2004 and became Professor of Angiogenesis in 2009. I now also stand as Deputy Director of the Barts Cancer Institute since 2012.

Awards

  • 2015- Member of the Academy of Medical Science
  • 2015- Member of the European Molecular Biology Organisation
  • 2015- British Society of Cell Biology Hooke Medal